
314 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 1, JANUARY 2005

Scattering-Parameter Models and Representations
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Abstract—We present straightforward models and representa-
tions for RF and image mixers, and develop simple rules for trans-
forming electrical problems involving mixers and signals at several
frequencies into equivalent single-frequency problems. We show
how those models, representations, and rules can be applied to
mixer characterization with vector network analyzers, and how
they relate to more general descriptions based on scattering pa-
rameters currently in use.

Index Terms—Frequency conversion, frequency translation,
image frequency, microwave, mixer, model, scattering parameters.

I. INTRODUCTION

WE DEVELOP system-level models and representations
for electrical mixers based on scattering parameters

and ideal mixer blocks. The scattering parameters describe
the reflections, transfer function, and degree of reciprocity
of the mixers. The ideal mixer blocks describe their ideal
frequency-translation behavior. Results from the experimental
study of [1], some of which we present here, confirm the theory.

An electrical mixer multiplies a low-level input signal at one
of its ports by a high-level local-oscillator (LO) signal at fre-
quency . This multiplication is accomplished by using the
high-level LO signal to periodically turn on and off diodes (or
transistors) in the mixer, creating a time-varying conductance
with the same periodicity as the LO signal. The circuit is de-
signed so that the time-varying conductance modulates (multi-
plies) the low-level input signal. This temporal multiplication
translates low-level signals between a (typically) low interme-
diate frequency (IF) at one port of the mixer and signals at
an “RF” frequency or an “image” (IM) fre-
quency at the other port of the mixer.

Electrical mixers also generate a number of other “mixing
products” (additional or “spurious” frequency components) at
sums and differences of the harmonics of the LO, IF, RF, and
image frequencies. References [2] and [3] outline a complete
circuit theory describing this behavior, which we do not address
here, in terms of conversion matrices.

The conversion matrices of [2] and [3], which we summarize
in Appendix I, express the relationships between voltages and
currents or, equivalently, the forward and backward waves at all
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of the frequencies generated by a mixer. While the theories of
[2] and [3] are essential for mixer design, they are more complex
than required for most system-level design. This complexity, as
well as the integration of the frequency-translating properties
of the mixer into the conversion matrices themselves, obscures
some important relationships and makes them difficult to use for
systems design and test.

In practice, most mixers are operated as simple frequency
converters in a quasi-linear regime. They are configured with
strong LO, small-signal inputs, and filters that allow up- and
down-conversion between the mixer’s IF and RF frequency, and
do not create spurious signals at other frequencies. We call these
standard RF mixers. We call like mixers that only allow up-
and down-conversion between the IF and image frequencies
“image” mixers.

Here, we restrict our discussion to standard RF and image
mixers satisfying these restrictions. Specifically, we ignore any
spurious mixer outputs at other frequencies, and do not treat is-
sues such as mixer nonlinearity or dependence on the level of the
LO signal. By restricting ourselves to a single frequency at each
port, and separating the frequency-translating behavior of the
mixer from its nonideal behavior, we are able to develop models
and representations that clarify system-level mixer behavior. In
particular, we develop a set of straightforward and intuitive rules
for transforming multifrequency mixer problems into equiva-
lent single-frequency problems that can be solved with the sim-
plest computer-aided-design software tools or even analytically
in many cases. The rules we develop find immediate application
in the characterization of mixers with vector network analyzers
(VNAs). In Appendices I and II, we relate our representations
to conversion matrices and large-signal scattering functions.

II. BASIC MIXER OPERATION

The trigonometric identity
helps us to understand the basic operation

of an electrical mixer in the time and frequency domains. For
example, we can replace in the identity with the total phase

of a sinusoidal signal at the LO port, and in the
identity with the total phase of a sinusoidal signal at
the IF port. This shows that the multiplication in time of the LO
and IF signals in a mixer results in two new frequency compo-
nents at the RF (sum) frequency with total phase

and image (difference) frequency
with total phase .

Fig. 1 shows how the phases and, in a like manner, the fre-
quencies of the LO, IF, RF, and image frequencies are related.
The horizontal arrows illustrate how an increase or decrease in
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Fig. 1. Frequencies at the input and output of an electrical mixer. The
horizontal arrows show how changes in the phase or frequency of an input
signal change the output signal. (a) Changing IF, RF, or IM and fixed LO.
(b) Fixed IF and changing LO. (c) Fixed RF and changing LO. (d) Fixed IM
and changing LO.

the phase (or frequency) of one of the input sinusoids to the
mixer changes the phase (or frequency) of the mixer’s output
sinusoid. For example, Fig. 1(a) indicates that an increase in the
phase of the input sinusoid at the IF will increase the phase of
an output sinusoid at the RF, but decrease the phase of an output
sinusoid at the image frequency.

We take special care to treat image mixers in our develop-
ment. We will see later that the phase reversal of the IF and
image signals complicates the electrical behavior of image
mixers at their output ports.1

III. STANDARD RF MIXER

Conventional scattering parameters (i.e., the pseudowave
scattering parameters of [4]) can be used to describe the elec-
trical behavior of linear time-invariant electrical two-ports. The
conventional scattering parameters relate the incident and
reflected wave coefficients and at port 1 of the device to
the incident and reflected wave coefficients and at port 2
of the device by

(1)

The requirement that the frequencies on the two ports are the
same is an important restriction on (1).

The ideal RF mixer of Fig. 2(a) acts purely as a frequency
translator. Choosing the reference impedance [4] as real, the in-
cident and reflected wave coefficients and at frequency

on the IF port of the ideal RF mixer are related to the inci-
dent and reflected wave coefficients and at frequency

on the RF port of the mixer by

(2)

1Unlike the RF mixer, we can reverse the two ports of an ideal image mixer
without changing its electrical behavior. However, to avoid confusion, we assign
unique labels to the two ports of the ideal image mixer. Sticking with convention,
we call one port the IF port and the other the image port.

Fig. 2. Schematic and incoming and outgoing waves of an ideal mixer block.
(a) RF mixer. (b) Image mixer.

Fig. 3. Models and representations for imperfect mixers. (a) RF mixer.
(b) Image mixer.

where is the wave coefficient of the LO signal at the ideal
mixer, and the superscript refers to the complex conjugate,
which corresponds to reversing the phase of the coefficient.

The LO power in most mixers is set at a level high enough to
turn the mixing elements (the diodes or transistors) completely
on and off with each cycle of the LO. Thus, to first order, an
increase or decrease in LO power does not change the mixer
output. Thus, we set .

Equation (2) can be understood by referring to Fig. 1. We
see that increasing the phase of the incident-wave coefficient

at the IF port or the phase of the LO increases the
phase of the outgoing-wave coefficient at the RF port, as
shown in Fig. 1(a) and (b). Likewise, increasing the phase of

or decreasing the phase of increases the phase of ,
as illustrated in Fig. 1(a) and (c).

Note that because the frequencies at the IF and RF ports of
the ideal mixer are not the same, the electrical behavior of even
this ideal RF mixer cannot be represented by a conventional
scattering-parameter matrix. The matrix in (2) is perhaps more
appropriately called a conversion matrix [5], but should not be
confused with the more general conversion matrices described
in [2] and [3].

Of course, no mixer is ideal: real mixers have a frequency-
dependent conversion loss (or gain) and phase distortion that we
will attempt to capture in our mixer representation. However, we
will ignore a number of second-order nonlinear effects.

Fig. 3(a) shows two models or representations of a non-
ideal RF mixer. In these mixer models, we separate the ideal
frequency-translating behavior of the mixer from its nonideal
behavior, which we represent in terms of standard scattering
parameters.

In the first model, all of the nonideality of the mixer caused
by reflections, imperfect conversion loss, and phase distortion is
described by a scattering-parameter matrix placed before
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the ideal mixer block. Here, relates the wave coefficients
at its two ports by (1), and those waves have the same frequency

. It is the ideal mixer block to the right of , whose elec-
trical behavior is described by (2), that performs the frequency
translation between the IF and RF frequencies. Thus, we can
call , which is akin to an “error box” used to describe non-
idealities in VNAs, a true scattering-parameter matrix.

In the second model, the nonideality of the mixer is described
by a similar scattering-parameter matrix placed after the
ideal mixer block. While relates wave coefficients with
frequency , rather than , the frequencies are still the
same at both ports of so we can also call a true
scattering-parameter matrix.

From (1) and (2), we can readily show that, for nonideal RF
mixers

(3)

The matrices in (3) incorporate the frequency-translating be-
havior of the mixers, and are similar in form of the conversion
matrices discussed in [2] and [3] (see Appendix I).

Note that the phase of in (3) is the phase of the LO at
the ideal mixer block in the model. The phase of is not
usually equal to the phase of the LO at the mixer’s LO port.
This distinction is important since, while the phase of the LO
at the mixer’s LO port is often measurable, the phase of is
not.

Equation (3) shows that, while and relate incident
and reflected waves at different frequencies, their elements are
equal. Thus, we conclude that . This important
fact is summarized graphically by the two equivalent represen-
tations shown in Fig. 3(a).

We can easily show from (2) that the IF source at frequency
and ideal RF mixer in Fig. 4(a) can be described by an equiv-

alent RF source at frequency with source output-wave co-
efficient . Likewise, the RF source at frequency

and ideal RF down-converting mixer in Fig. 4(b) can be de-
scribed by an equivalent IF source at frequency with source
output-wave coefficient . Finally, Fig. 5 gives the
scattering parameters for two ideal “back-to-back” RF mixers.

IV. TRANSFORMATION TO A SINGLE-FREQUENCY PROBLEM

The relations summarized in Figs. 3–5 can be regarded as
a set of rules for transforming mixer problems into equivalent
single-frequency problems that can be solved with conventional
procedures and formulas. The idea is to use the transformations
and relations in the figures to “move” the ideal mixer blocks to
the left- or right-hand side and eventually combine them either
with other ideal mixer blocks or with sources.

When ideal up-converters and down-converters are com-
bined, the result is one of the two scattering-parameter matrices
shown in Fig. 5. When ideal mixer blocks are combined with
sources, they simply translate the phase and frequency of the

Fig. 4. Equivalent sources for RF and image mixers. (a) RF up. (b) RF down.
(c) Image up. (d) Image down.

Fig. 5. Scattering parameters of two cascaded mixers with the same LO
frequency. The top box shows the scattering parameters of a mixer cascade that
translates signals from the IF to the RF and back to the IF frequency. The bottom
box shows the scattering parameters of three other common configurations.

Fig. 6. Actual and equivalent circuit for a source and RF mixer. (a) Actual
circuit. (b) Equivalent circuit at RF frequency.

source, as illustrated in Fig. 4. In either case, the ideal mixer
blocks and multiple frequencies are removed from the problem.

Fig. 6 illustrates the application of the procedure to an ex-
ample incorporating a standard RF mixer. Due to the RF mixer
in the circuit, we cannot solve for the electrical behavior of the
circuit of Fig. 6(a) with conventional scattering-parameter rules.

However, we can use the relationship summarized in Fig. 3(a)
to interchange the position of and the ideal mixer in the
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circuit. By splitting the source into an ideal matched source and
a scattering-parameter “error box” of the form

(4)

we can then move the ideal mixer through the source reflec-
tion coefficient. Finally, we can use the relationship of Fig. 4(a)
to combine the ideal RF mixer and source, which gives us the
equivalent circuit of Fig. 6(b).

We have now transformed the problem of Fig. 6(a), which
contains signals at both the IF and RF frequencies, into the
single-frequency problem at the RF frequency of Fig. 6(b).

V. IMAGE MIXER

The rules and transformations for standard RF mixers we dis-
cussed in Section IV were quite straightforward. Now we ad-
dress the more complicated case of the image mixer.

Fig. 2(b) shows an ideal image mixer. The incident and re-
flected wave coefficients and at frequency on the IF
port are related to the incident and reflected wave coefficients

and at the difference frequency on
the image port of the mixer with

(5)

Fig. 1 also helps us to understand (5). For example, we see
that increasing the phase of the incident-wave coefficient at
the IF port decreases the phase of the outgoing-wave coefficient

at the image port, as illustrated in Fig. 1(a). This explains
why the conjugate of , and not , appears in (5).

The consequences of the conjugates on and in (5) are
profound: (5) cannot be rewritten in the form of (1) describing
the way in which conventional scattering parameters relate inci-
dent and reflected waves. This is because increasing the phase
of an incident wave on an image mixer decreases the phase of
the output wave at the other port. Conventional scattering pa-
rameters, on the other hand, force the phase of the output to
increase when the phase of the input is increased. Thus, we see
that, while (5) is fairly straightforward, its form differs funda-
mentally from that of (1).

From (1) and (5), it is easy to show that, for a nonideal image
mixer

(6)

Thus, the two equivalent-circuit models of the image mixer in
Fig. 2 are related by . The conjugation of the
scattering parameters in is related to the fact that, like the
standard RF mixer, the ideal image mixer is not time invariant,
and arises from the conjugates on and in (5).

From the relation , we see that interchanging
the position of an ideal image mixer and conventional scat-

Fig. 7. Actual and equivalent circuit for a source and an image mixer.
(a) Actual circuit. (b) Equivalent circuit at image frequency.

tering-parameter matrix, as illustrated in Fig. 3(b), conjugates
all of the elements of those scattering parameters. This is no
trick as we have ever seen ordinary scattering parameters per-
form before, and illustrates how profoundly (5) differs from (1).

Fig. 4(c) and (d) shows equivalent-circuit models for sources
and image mixers. The similarity of the two models is not sur-
prising given the reversibility of the two ports of an ideal image
mixer.

Finally, Fig. 5 shows the scattering parameters of two cas-
caded mixers with the same LO frequency. For the four config-
urations shown in this figure, the frequencies at the input and
output of the cascade are the same, and the cascade is described
by a true scattering-parameter matrix.

VI. IMAGE-MIXER PROBLEM

We can also use the relations summarized in Figs. 3–5 to
transform image-mixer problems into equivalent single-fre-
quency problems. However, as Figs. 3–5 indicate, moving ideal
image mixers through other circuits conjugates their scattering
parameters.

Fig. 7 illustrates the procedure for the example of Fig. 6 with
an image, rather than an RF, mixer. When we use the rela-
tionship summarized in Fig. 3(b) to interchange the position
of and the ideal image mixer in the circuit, we conju-
gate in the process. Likewise, when we move the ideal
image mixer through the source reflection coefficient, we also
conjugate . Finally, using the relationship of Fig. 4(c) to com-
bine the ideal image mixer and source, we obtain the equivalent
circuit of Fig. 7(b). We have now transformed the problem of
Fig. 7(a), which contains signals at both the IF and image fre-
quencies, into the single-frequency problem at the image fre-
quency of Fig. 7(b). The equivalent circuit of Fig. 7(b) can be
easily simulated in computer-aided design (CAD) software or
solved analytically.

VII. MIXER RECIPROCITY AND GROUP DELAY

Passive time-invariant circuits constructed of reciprocal ma-
terials satisfy the Lorentz reciprocity theorem, and are often
called “reciprocal.” Reciprocity in this sense implies that the
circuits forward and reverse transmission coefficients and
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are equal. Implicit in this statement is the fact that the input
and output frequencies of the circuit are equal.

Obviously, microwave mixers do not satisfy the requirements
of the Lorentz reciprocity theorem and, thus, would not be ex-
pected, in general, to be reciprocal. In fact, even an ideal RF
mixer whose electrical behavior is defined by (2) is not recip-
rocal in any strict sense since the relationships between its input
and output phases depend on the LO frequency, i.e., we can al-
ways choose in (2) so as to set the difference of the phase
of and equal to any value we desire.

How then are we to define the reciprocity of a mixer? Per-
haps the best way to define mixer reciprocity is not in terms of
the mixer itself, but rather in terms of the scattering parame-
ters defining the lack of ideality of the mixer. Not only do
these scattering parameters relate input and output wave coef-
ficients at the same frequency and, thus, might actually be ca-
pable of being reciprocal in the conventional sense, but stating
that guarantees us that signals are distorted during
up- and down-conversion in the same way, which corresponds to
what we intend to say when we claim that a mixer is reciprocal.

The difference in magnitudes of and can be deter-
mined in a straightforward way from measurements with trace-
able power calibrations [5]–[7]. However, in most measurement
situations, we will be able to measure the phases of the ratios

and (and, thus, and ) and the
phase of the LO at the mixer port, but not the phase of at the
ideal mixer block in the model. This is true when making mea-
surements with oscilloscopes and three-port large-signal net-
work analyzers [7]. In some VNA measurements [3], we cannot
even measure the phase of the LO at the mixer port, much less
the phase of at the ideal mixer block in the model. Thus,
in all of these situations, we are only able to measure the dif-
ference of and to within an unknown constant equal to
twice the phase of the unknown LO phase at the ideal mixer.

Since we are only able from measurements at the ports of
a mixer to determine the difference of the phases of and

to within an unknown constant, we must content ourselves
with defining mixer reciprocity, or the lack of it, in terms of the
changes in the phases of and with frequency. The group
delay is a measure of the time a band-limited signal takes to
pass through an electrical system, and is an ideal way to describe
mixer reciprocity.

Group delay is defined by , where is the
electrical phase of the signal at the output of the network minus
the electrical phase of the signal at the input of the network at
the same frequency. In our context, we can define the forward
and backward group delay of the mixer in terms of the phases
of and measured at a fixed value of . Note that the
group delay does not depend on the absolute phase of the
transfer function, which, in turn, depends on the absolute phase
of and, thus, offers an ideal way of expressing the phase
reciprocity of a mixer.

As we noted above, group delay is calculated from the
transfer function of a system whose input and output signals are
at the same frequency. The rules we developed here for trans-
lating multifrequency mixer problems into single-frequency
problems are, thus, ideal aids in calculating the group delay of
circuits containing mixers.

Fig. 8. Equivalent circuits for junction and mixer characterization with a VNA.
(a) Microwave junction. (b) RF mixer. (c) Image mixer.

VIII. MIXER CHARACTERIZATION WITH A VNA

We now turn our attention to experimental results obtained
from VNA measurements that illustrate the rules we have intro-
duced for image mixers. Bauer and Penfield introduced a classic
method of determining the scattering parameters of microwave
junctions in [8]. They began by connecting one port of the mi-
crowave junction with unknown scattering parameters to a
calibrated VNA, as shown schematically in Fig. 8(a). They then
connected a load with a known reflection coefficient to the
other port of the junction, and used the VNA to measure the re-
flection coefficient of the junction and its terminating load.

The reflection coefficient of the combination of the junc-
tion and its load, as measured by the VNA, is given by

(7)

Bauer and Penfield noted that three such measurements are suf-
ficient to determine and the product , and devel-
oped a least squares solution to make optimal use of a greater
number of measurements when they were available. Finally,
for passive junctions comprised entirely of reciprocal materials,
Bauer and Penfield noted that , allowing and
to be determined from the measured product .

Dunsmore [5] adapted this idea to RF mixer characterization
using the measurement configuration sketched on the left-hand
side of Fig. 8(b). Dunsmore noted that (7) also applied to the
RF mixer’s scattering parameters . He used a variant of
the classic procedure pioneered by Bauer and Penfield to solve
for from a set of measurements of the reflection
coefficient of the mixer terminated with different loads with
the known reflection coefficient . Dunsmore then assumed

to determine and from the measured
product .2

We can understand this procedure in the context of our mixer
models and rules. First, we note that the electrical behavior of

2In the case of a microwave junction, this assumption is justified by the
Lorentz reciprocity theorem and the choice of real reference impedances.
Reference [2] shows that purely resistive mixers with symmetric conductance
waveforms are reciprocal. However, as discussed earlier, reciprocity is most
certainly violated in diode mixers, although it may often be a reasonable
approximation.
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a load can be represented with a scattering-parameter matrix of
the form

(8)

Now we can use the rule illustrated in Fig. 3(a) to “move” the
ideal RF mixer block in Fig. 8(b) through the load , leaving
its reflection coefficient unchanged. The result is the equivalent
circuit of Fig. 8(b). Not only has the ideal mixer block dropped
out of the equivalent circuit of Fig. 8(b), but the effect of the
LO phase has “cancelled” itself out completely and no longer
appears in the circuit equations.

In this VNA setup, the resulting circuit in Fig. 8(b) is identical
to that of Fig. 8(a) with the adapter scattering parameters
replaced by . This explains why the mixer and its LO can
be treated as a simple time-invariant two-port and justifies the
application of (7) and the standard deembedding methods used
to characterize microwave junctions to standard RF mixers.

We can apply the same procedure to an image mixer. How-
ever, for an image mixer, we must use the rule of Fig. 3(b) to
move the ideal mixer block through the reflection coefficient

of the load, conjugating in the process, as shown in
Fig. 8(c). Thus, we see that, for image mixers, we can indeed
apply the classic deembedding procedures of Bauer and Penfield
and others, but must replace the reflection coefficient of the
load by in the equations.

We performed three fundamental checks of this result using
the measurement methods developed in [1]. In each experiment,
we compared the method of [5] applied to an image mixer using
both and with an independent measurement.

A. Image Mixer and a Precision Airline

We first characterized an image mixer with the method of
[5]. We then added a 5-cm precision airline to the output port
of the mixer and repeated the characterization. The measured
loss of the airline was approximately 0.05 dB and its measured
reflection coefficient was less than 45 dB so we expect the
addition of the airline to modify the phase response of the image
mixer while leaving its magnitude response nearly identical.

The two solid lines in Fig. 9 show the transmission coeffi-
cients obtained for the image mixer and mixer/airline combina-
tion using in the calculations, as derived from our theory.
The measurements differ by only approximately 0.05 dB.

However, when we performed the calculations using ,
rather than , we obtained the transmission coefficients
denoted by dashed lines in this figure. The large discrepancy
between the results we obtain using in the calculations
clearly illustrates the importance of replacing by when
applying the method of [5] to the characterization of image
mixers.

B. Termination in a Precision Load

We next terminated an image mixer in a precision load and
used a conventionally calibrated VNA to measure the reflec-
tion coefficient of the mixer at its unterminated port. This re-
flection coefficient is, by definition, the reflection coefficient of
the mixer at the unterminated port.

Fig. 9. VNA measurement of the transmission coefficients of an image mixer
and mixer/airline combination using the method of [5]. This figure shows that
� must be replaced by � in the method of [5] to yield results consistent
with the low loss and reflection coefficient of the precision airline we used in
the experiment. We used an LO frequency of 9.9 GHz and the IF frequencies
spanned 0.9–1.5 GHz (data from [1]).

Fig. 10. VNA measurement of the reflection coefficients of an image mixer
and mixer/airline combination using the method of [5]. This figure shows that
� must be replaced by � in the method of [5] to yield results consistent with
a direct measurement of the reflection coefficient of the mixer terminated with
a precision resistor. We used the same frequency setting in Fig. 9 and the data
was measured as described in [1] and [5].

Fig. 10 compares the reflection coefficients determined with
the method of [5] using and to this more fundamental
measurement of the reflection coefficient of the image mixer.
This figure again shows that must be conjugated when ap-
plying the method of [5] to image mixers.

C. Power-Meter-Calibrated Measurements

Finally, we used a power meter to directly calibrate our VNA
measurements in an absolute sense at both the IF and image
frequencies, and then measured the magnitudes of the forward
and reverse transfer function of an image mixer directly. Fig. 11
plots the ratios of the transmission coefficients determined using
the method of [5] to the mean of the directly measured for-
ward and reverse transmission coefficients. This figure shows
that using in the method of [5] to characterize an image mixer
yields agrees more closely with measurements performed by our
power-meter-calibrated VNA than using .
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Fig. 11. Ratio of the transmission coefficients of an image mixer using the
method of [5] to direct power-meter-calibrated measurements. We used the same
frequency settings as for the data in Fig. 9 and the measurements were performed
as described in [1] and [5].

IX. CONCLUSION

We have presented models and representations for standard
RF mixers and image mixers based on scattering parameters and
ideal mixing blocks. These models are easily incorporated into
conventional computer-aided-design tools and are suitable for
systems-level analysis. We have also developed a set of simple
rules for analytically transforming electrical problems involving
mixers and signals at several frequencies into equivalent single-
frequency problems. Finally, we have shown how those models,
representations, and rules can be applied to mixer characteriza-
tion with VNAs. We have confirmed the theory with the exper-
imental method described in [1].

The models and representations we have developed are lim-
ited to mixers with a single-frequency IF port and a single-fre-
quency RF or image port. In Appendices I and II, we show how
our representations are related to two more general represen-
tations based on scattering parameters applicable to a broader
class of mixer and nonlinear problems.

APPENDIX I
RELATIONSHIP TO CONVERSION MATRICES

Torrey et al. [2] introduced the notion of conversion matrices
to describe the behavior of diode mixers in 1948. These com-
plete conversion matrices are required for accurate mixer de-
sign, and are capable of describing spurious mixer outputs at
frequencies other than the IF, RF, and image frequencies.

Maas summarized the approach of Torrey et al. in [3], and
defined an “ matrix,” which we will call , from

, where is the diode’s conversion (admittance)
matrix. Identifying Maas’ port 0 with the mixer’s IF port and
Maas’ port 1 with the mixer’s RF port, we can rewrite [3, eq.
(4.87)] for an RF mixer as

(9)

Comparing (3) and (9), we see that, for an RF mixer

(10)

Identifying Maas’ port 1 with the mixer’s image port, we can
rewrite [3, eq. (4.88)] for an image mixer as

(11)

Note that Maas defined port 1 as the image port, and port 2 as
the IF port in [3, eq. (4.88)], which gives rise to the reversal of
the wave coefficients in the vectors in (5) and (11). Comparing
(5) and (11), we see that, for an image mixer

(12)

APPENDIX II
RELATIONSHIP TO LARGE-SIGNAL SCATTERING FUNCTIONS

Verspecht et al. [9]–[11] introduced a linearization of a
“large-signal scattering function” relating signals at a set har-
monic frequencies.3 Part of the utility of this linearization is that
its parameters can be determined by artificial neural networks
from large-signal network-analyzer measurements.

The linearization uses two complex Jacobian-like matrices
and to map the small-signal input vector of complex

wave coefficients into the small-signal output vector of wave
coefficients with [11] as follows:

(13)

If we eliminate all of the elements of and , except those
relating the IF at the input of a mixer and the RF (or image) fre-
quency at the output of a mixer, we can write
and , where the superscript indicates the
transpose. Comparing (3) and (13), we see that, for an RF mixer

(14)

For an image mixer with and
, we have, from (5) and (13)

(15)
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